问题:
Given an array of citations (each citation is a non-negative integer) of a researcher, write a function to compute the researcher's h-index.
According to the : "A scientist has index h if h of his/her N papers have at least h citations each, and the other N − h papers have no more than h citations each."
For example, given citations = [3, 0, 6, 1, 5]
, which means the researcher has 5
papers in total and each of them had received 3, 0, 6, 1, 5
citations respectively. Since the researcher has 3
papers with at least 3
citations each and the remaining two with no more than 3
citations each, his h-index is 3
.
Note: If there are several possible values for h
, the maximum one is taken as the h-index.
解决:
【题意】有h篇论文的引用数目大于等于h,其余引用小于h。
① 排序法。先将数组排序,我们就可以知道对于某个引用数,有多少文献的引用数大于这个数。对于引用数citations[i]
,大于该引用数文献的数量是citations.length - i
,而当前的H-Index则是Math.min(citations[i], citations.length - i)
,我们将这个当前的H指数和全局最大的H指数来比较,得到最大H指数。
1)
class Solution { //4ms
public int hIndex(int[] citations) { Arrays.sort(citations); int h = 0;//全局最大的H指数 for (int i = 0;i < citations.length;i ++){ int curH = Math.min(citations[i],citations.length - i);//得到当前的H指数 if (curH > h){ h = curH; } } return h; } }2)
class Solution{//2ms
public int hIndex(int[] citations) { Arrays.sort(citations); for (int i = 0; i < citations.length; i ++) { if (citations[i] >= citations.length - i) { return citations.length - i; } } return 0; } }② 数组映射法。我们额外使用一个大小为N+1的数组dp。dp[i]表示有多少文章被引用了i次,这里如果一篇文章引用大于N次,我们就将其当为N次,因为H指数不会超过文章的总数。
1)
class Solution { //1ms
public int hIndex(int[] citations) { int len = citations.length; int[] dp = new int[len + 1]; for (int i = 0;i < len;i ++){//统计各个引用次数对应多少篇文章 int index = citations[i] <= len ? citations[i] : len; dp[index] += 1; } int count = 0; for (int i = len;i > 0;i --){ count+= dp[i]; if (count >= i){ return i; } } return 0; } }2)
class Solution { //1ms
public int hIndex(int[] citations) { int[] dp = new int[citations.length + 1]; for (int n : citations){ if (n >= citations.length){ dp[citations.length] ++; }else{ dp[n] ++; } } int count = 0; for (int i = citations.length;i > 0;i --){ count += dp[i]; if (count >= i){ return i; } } return 0; } }